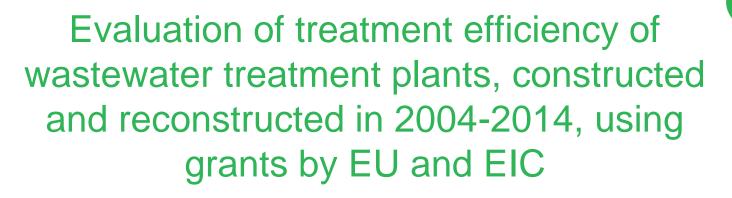
Eesti Keskkonnauuringute Keskus

Evaluation of treatment efficiency of wastewater treatment plants, constructed and reconstructed in 2004-2014, using grants by EU and EIC

Situation in Estonia



- In total there are ca 700 wastewater treatment plants in Estonia
 - 242 WWTPs have been constructed or reconstructed between 2004 and 2014 using grants by EU or Environmental Investment Centre
 - More than 1 000 000 000 EUR has been invested into 288 WWTPs during that period

But...

- According to national monitoring programs about 50% of WWTPs are not capable to meet environmental requirements
- According to self-monitoring programs about 10% of WWTPs are not capable to meet environmental requirements most of the time

Purpose of the project:

- Evaluation of efficiency of WWTPs
- What are the common mistakes?
- Recommendations and guidlines
 - Deadline september 2015

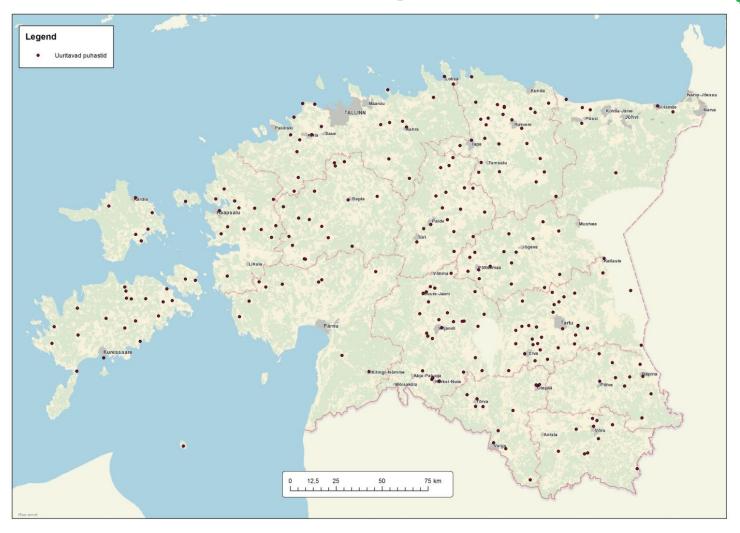
Parties involved

- Ministry of Environment
- Estonian Environmental Research Centre
- aqua consult baltic OÜ
- Estonian University of Life Sciences
- Entec OÜ
- AS Infragate Eesti
- University of Tartu
- Republic of Estonia Environmental Board
- Estonian Waterworks Association
- Estonian Environment Agency
- Environmental Investment Centre

Evaluation of WWTPs

- I phase evaluation and data collection
 - Methodical approach
 - On site data collection

- II phase statistical analysis and recommendations
 - Statistical analysis
 - Case studies and reasons for malfunction
 - Recommendations for unsuccessive WWTPs
 - Guidlines for next funding period


Phase I

- Integrated method for evaluation of different wastewater treatment technologies was developed
- 245 WWTPs had to be visited and evaluated on site
- Questionnaries for water companies
 - Finances, investments etc

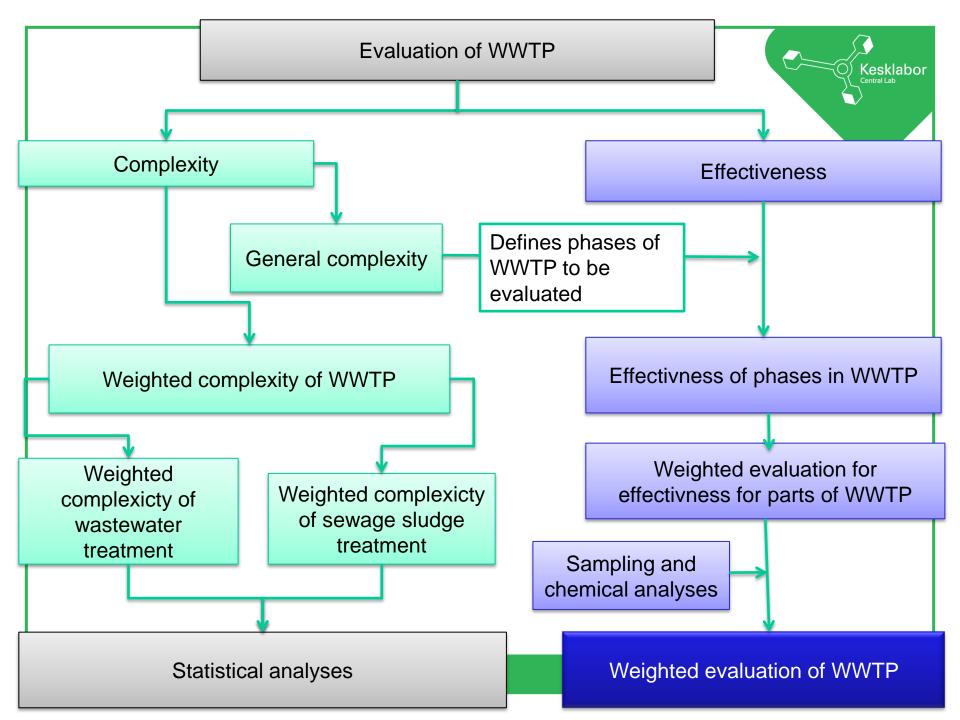
WWTPs

- The aim of integrated method for evaluation of different WWTPs was to create comparable system of ratings for all technological solutions
 - All different stages (screens, septage tanks etc) of WWTP were examined individually
 - Summary of evaluation was formed from the grades of different stages

Parts of the evaluation

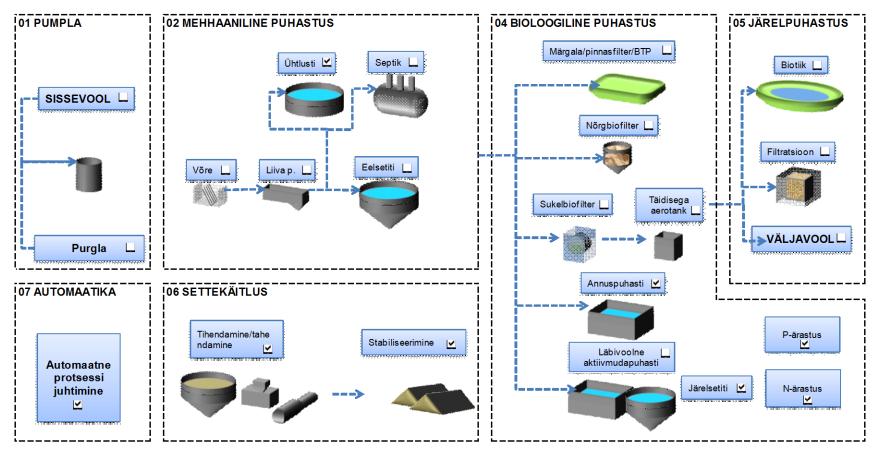
- Complexity how complex is the technology used?
- Effectivness how well is it working?
- Operator how well does an operator know the plant he is responsible for?

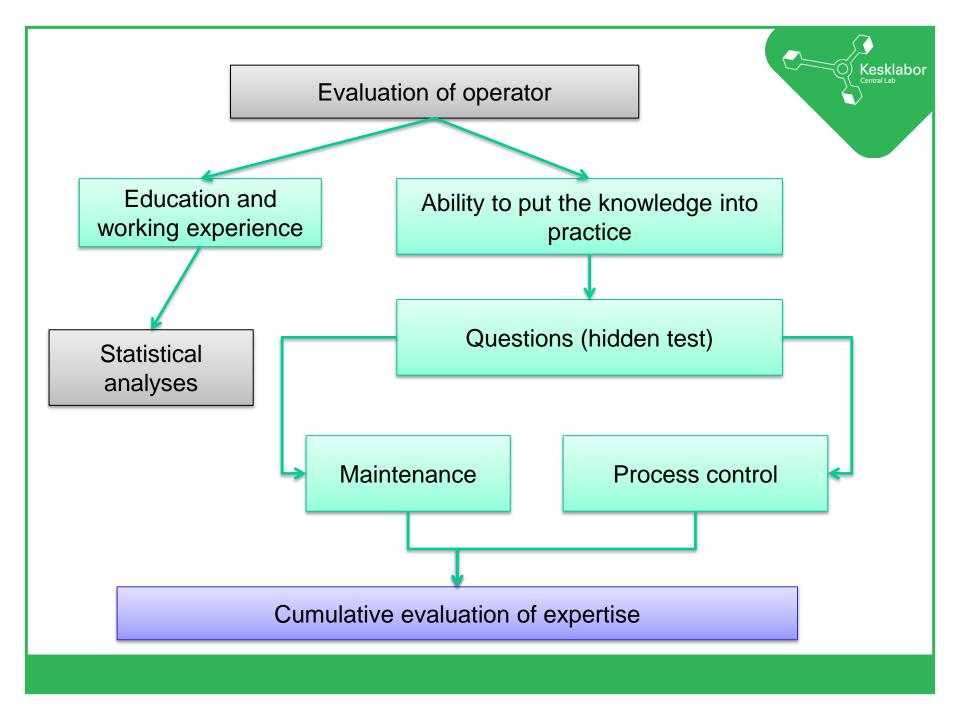
Complexity



- The purpose is to compare different technologies
- The aim is to create a comparable scale for different wastewater treatment plants
- Complexity describes on the scale 0-10
 - How many different stages are used
 - How complex are these separate stages

Effectiveness




- Effectivness surveys all these factors that might affect proper work of the WWTP:
 - Malfunction of the equipment
 - Operational and maintenance issues
 - Settling problems
 - Etc
- Effluent analyzes are also included to the evaluation of effectiveness

Method for evaluation

Komplekssus kumulatiivselt	Punkte	KAAL	KAALUTUD
10 PALLI SKAALAS	1. $\frac{\sum_{i=1}^{n} X_i \times Y_i}{\sum_{i=1}^{n} Y_i} \times 10$	$\sum_{i=1}^{n} Y_{i}$	$\sum_{i=1}^{n} X_i \times Y_i$
Parameeter 1	0	4	0
Parameeter 2	1	3	3
Parameeter _{n-1}	X _{n-1}	Y _{n-1}	$X_{n-1} \times Y_{n-1}$
Parameeter _n	X _n	Y _n	$X_n \times Y_n$

Adjusted scale from 0 to 10

- 233 WWTPs have been evaluated
 - 8 more to go
 - 4 WWTPs did not recieve any money
- All WWTPs had problems
 - 76 WWTPs did not meet the effluent quality requirements
- In general the methodical evaluation agrees with analytical results

- Not all the water companies are cooperative
 - Finances
 - Projects
 - Other data
- Several working versions of Excel
- Method for evaluation needs to be adjusted

Problems with WWTPs

- Main reasons for malfunction:
 - Infiltration
 - Operational problems
 - Foaming and bulikng
 - Unsuitable projects and/or technology
 - Etc....

Design and construction	No of occasions	%
Designing of WWTP was done without actual		
loading measurements	113	48,29%
Equipment on site is different than designed	3	1,28%
Installation of equipment or facilities is		
inadequate	30	12,82%
Indoor ventilation is inadequate	5	2,14%

Operational limitations

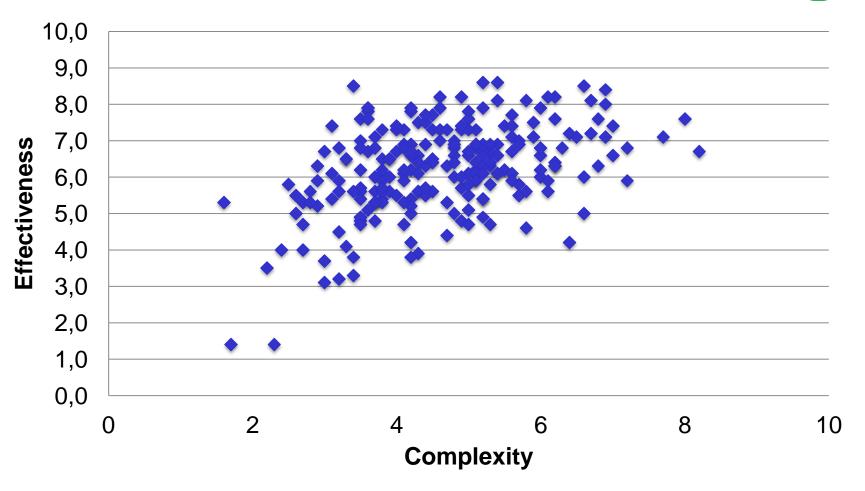
Factors limiting O&M	No of occasions	%
The process is partially visible	12	5,13%
The process is not visible	53	22,65%
Access to the facilities is limited or absent	20	8,55%
O&M manual is absent	22	9,40%
O&M manual is not about the process	33	14,10%
Not enough finances for regular maintenance	6	2,56%
Operator does not know how to make changes in the		
process	13	5,56%
Heavy shutters are limiting O&M	6	2,56%
Power failures	11	4,70%
Freezing and glaciation	6	2,56%
Equipment failures	27	11,54%

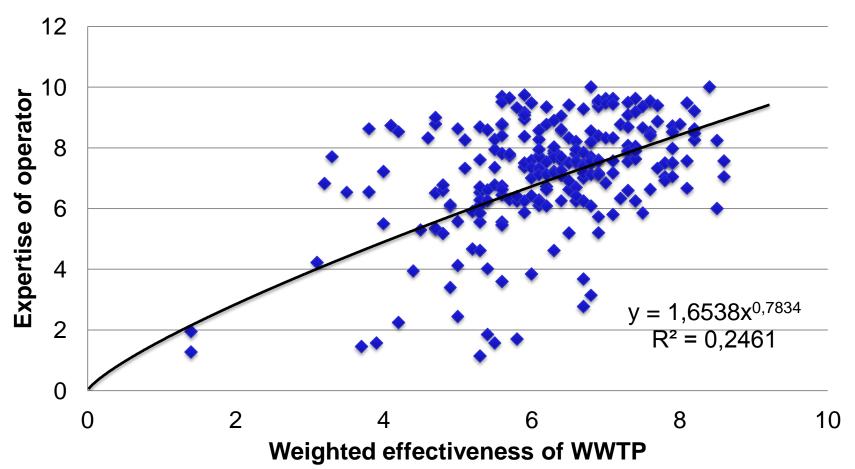
Problems with influent

Limiting factors	INO OT	%
Lilliting factors	occasions	76
Changes in Q more than 50%	126	53,85%
No bybass	52	22,22%
Problems with industrial waters	172	73,50%

	100 01	
Factors limiting AS and SBR	occasions	
Foaming and bulking	36	15,38%
Problems with aeration	35	14,96%
Anoxic conditions are not guaranteed	22	9,40%
Anaerobic conditions are not guaranteed	8	3,42%
Operator does not adjust SRT for cold period	32	13,68%

Chemical analyzes do not always confirm evaluation on site




Technical complexity does not limit effectivness

Operator is important!

Eesti Keskkonnauuringute Keskus

Thank you!

vallo.korgmaa@klab.ee, +372 53 33 5215

